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Abstract: A procedure is presented for the probabilistic analysis of the seismic soil-structure interaction problem. The procedure

accounts for uncertainty in both the free-field input motion as well as in local site conditions, and structural parameters. Uncertain

parameters are modeled using a probabilistic framework as stochastic processes. The site amplification effects are accounted for via a

randomized relationship between the soil shear modulus and damping on the one hand, and the shear strain of the subgrade on the other

hand, as well as by modeling the shear modulus at low strain level as randomly fluctuating with depth. The various random processes are

represented by their respective Karhunen-Loève expansions, and the solution processes, consisting of the accelerations and generalized

forces in the structure, are represented by their coordinates with respect to the polynomial chaos basis. These coordinates are then

evaluated by a combination of weighted residuals and stratified sampling schemes. The expansion can be used to carry out very efficiently,

extensive Monte Carlo simulations. The procedure is applied to the seismic analysis of a nuclear reactor facility.

DOI: 10.1061/~ASCE!0733-9399~2002!128:1~66!

CE Database keywords: Finite-element method; Soil-structure interaction; Seismic response; Stochastic processes.

Introduction

The reassessment of existing massive commercial and defense

hazardous facilities is a high priority activity involving major

engineering challenges. Usually, hazardous facilities include

heavy and stiff concrete structures, partially embedded, embed-

ded, or even buried the dynamical response of which is signifi-

cantly affected by their interaction with the surrounding soil. Dy-

namic soil-structure interaction ~SSI! is a complex phenomenon
with significant uncertainties associated with the input motions as

well as the analytical models used for both the interaction and the

dynamical properties of the materials involved. The ability to ra-

tionally account for these uncertainties and propagate their effects

to the predicted behavior of the associated systems has the poten-

tial of enhancing their reliability and reducing the cost associated

with their maintenance.

The present paper applies techniques from stochastic finite el-

ements ~Ghanem and Spanos 1991! to the probabilistic character-
ization and probabilistic risk assessment ~PRA! of hazardous fa-
cilities under dynamic loads associated with such extreme events

as strong ground motions. The primary goal of this article is to

enhance current analysis techniques of such facilities by demon-

strating how these stochastic finite element formulations can be

used to integrate models of uncertainty with state-of-the-art meth-

ods in seismic soil-structure interaction. Uncertainties in a num-

ber of key factors can be simultaneously accounted for. The

method used in this article permits the efficient simulation of

response quantities that are consistent with specific probabilistic

models of the input data. The novelty of the approach lies in its

ability to handle a combination of sources for the uncertainty,

modeled in a probabilistic framework. The paper also extends

current stochastic finite element techniques to coupled stochastic

systems and to systems featuring nonlinear stochastic constitutive

behavior. Furthermore, a new procedure is developed and imple-

mented in the paper for the convergence acceleration of the poly-

nomial chaos expansions used to approximate the stochastic so-

lution.

Extensive studies on probabilistic SSI have been carried out at

the Lawrence Livermore National Laboratory ~LLNL! ~LLNL
1993! and the Brookhaven National Laboratory ~BNL! ~Pires
et al. 1985!. The LLNL study was based on a large number of
case studies with the aim of identifying the most significant vari-

ables for seismic SSI effects and their influence on structural re-

sponse variability. However, the LLNL study did not involve any

methodology for characterizing probabilistically either the input

data or the model predictions. The BNL study focused on nuclear

containment structures using the linear random vibration theory to

calculate limit state probabilities under random seismic loads. The

BNL methodology is restricted to superficial rigid circular foun-

dations on a viscoelastic half-space. For realistic situations in-

cluding arbitrarily shaped and/or flexible foundations, partially

embedded or buried structures, oblique seismic waves, and non-

uniform soil layering, the BNL methodology is not directly appli-

cable. The stochastic approach presented in the present paper ad-

dresses these aspects. Moreover, compared with the current

lognormal format used in most PRA methodologies for hazardous

facilities ~Reed and Kennedy 1994!, the stochastic procedure used
in this paper produces considerably more accurate results for fra-

gility analyses.

Specifically, by specifying the free-field input motion as a ran-

dom process with spatial random fluctuations, care is taken in

producing input motion records that are commensurate with
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specified probabilistic site response spectra. The probabilistic

character of these spectra features frequency-dependent fluctua-

tions and thus alleviates a number of constraints associated with

the traditional lognormal assumption. Additionally, the shear

modulus and material damping are assumed to be randomly vary-

ing functions of the shear strain, with this variability being also

represented as a random field. A significant role in describing the

dependence of shear modulus on shear strain is played by the

value of the shear modulus at small levels of strain. This quantity

is assumed to be varying randomly with depth, thus effectively

inducing a random layering of the medium that can be construed

as characterizing local site conditions. The random processes

modeling the input motion, the low strain shear modulus, and the

dependence of shear modulus on shear strain are then used as

input to a site response analysis program which computes the

actual soil motion in the free field ~Idriss and Sun 1991!. The
output from this site response analysis is then used as input to an

industry-standard software package for soil-structure interaction

analysis ~Lysmer et al. 1988! that has been enhanced to accom-
modate stochastic models for the structural stiffness and damping

~Ghiocel 1996b!. The superstructure is represented by two stick
beams modeling the containment structure of a nuclear power

plant and its internal structure, respectively, as shown in Fig. 1.

The effective modulus of elasticity and material damping of the

containment structure are assumed to be random variables with

specified means and standard deviations.

In the next section, the equations governing the motion of the

soil-structure system are briefly reviewed. Following that, two

expansions are introduced that are used in the sequel for repre-

senting random processes. These are the Karhunen-Loève and the

polynomial chaos expansions. The stochastic finite element

method is then briefly reviewed, and some specific details about

its implementation are presented. Probabilistic models for the

various random quantities are then introduced, and finally, a nu-

merical example is presented that exemplifies the proposed ap-

proach.

Equations of Motion

The computer program ACS-SASSI ~Ghiocel 1996b! is used for
both the site response and the soil-structure analyses. This com-

puter package implements the flexible volume substructuring

method ~Lysmer et al. 1988! formulated in the frequency domain
using the complex response function and finite element analysis.

Accordingly, the complete soil-structure system ~Fig. 2! is parti-
tioned into two substructures, namely the foundation and the

structure, as shown in Figs. 2~b! and ~c!, respectively. In this
partitioning, the structure consists of the superstructure plus the

foundation minus the excavated soil. Interaction between the

structure and the foundation occurs at all foundation nodes. The

equations of motion are given by,

FCss Csi

Cis ~Cii2Cf f1Xf f !
G Husuf J 5 H 0

Xf fuf
i J 1 HPxsPx f J 5 HPsPf J (1)

from which the final total motion of the structure can be deter-

mined. In these equations, the subscripts s, i, and f refer to de-

grees of freedom associated with the nodes on the superstructure,

foundation, and excavated soil, respectively. The matrix C is the

complex frequency-dependent stiffness matrix given by,

C~v !5K2v2M (2)

where M and K denote the total mass and complex stiffness ma-

trices, respectively, and v is the frequency of vibration. Further-
more, u denotes the complex Fourier coefficients of the modal

displacement solution, and Xf f is the complex impedance matrix,

Fig. 1. Structural model of reactor building
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which is a frequency dependent matrix representing the dynamic

stiffness of the foundation at the interaction nodes. Moreover, Pxs
and Px f are the amplitudes of the external forces at the superstruc-

ture and foundation nodes, respectively, with Ps and Pf denoting

the net forces at those nodes.

The standard solution of this problem involves three main

steps, performed at each frequency. First, the site response prob-

lem is solved to determine the free field motion uf driving the

embedded part of the structure. Second, the impedance problem is

solved to determine the matrix Xf f . Finally, the structural prob-

lem is solved for the nodal displacements inside the structure.

Computational Representation of Stochastic Fields

In the proposed approach, the key idea is to provide a global

description of the response surface as a function of a denumerable

set of random variables. The implementation of the proposed ap-

proach is achieved in two steps. The first one involves an expe-

ditious condensation of the basic random processes via the

Karhunen-Loève expansion. The second step evaluates the coef-

ficients of a stochastic orthogonal polynomial expansion of sys-

tem response. After the coefficients of this polynomial expansion

have been calculated, points on the system response surface can

be readily simulated to evaluate probabilities of various events of

interest.

Stochastic Representation of Dynamic Loading and
System Parameters

A major concern of the present paper deals with the characteriza-

tion of the prediction from a model of a physical phenomenon

where some parameters of the model have been represented as

stochastic processes. The answer to this question draws on an

analogy from the deterministic approximation theory, where a so-

lution to a problem is identified with its projection on a basis in an

appropriate function space. It often happens, in deterministic

analysis, that the coefficients in such a representation have an

immediate physical meaning, which distracts from the mathemati-

cal significance of the solution. Carrying this argument over to the

case involving stochastic processes, the solution to the problem is

identified with its projection on a set of appropriately chosen

basis functions. A random variable, is therefore viewed as a func-

tion of a variable, u, that refers to the space of elementary events.
As functions, random variables define a Hilbert space in which

approximations are sought. The first step in that effort is to iden-

tify suitable bases, two of which are introduced in this section.

Karhunen-Loève Expansion

The Karhunen-Loève expansion of a stochastic process p(x,u), is
based on the spectral expansion of its covariance function

Rpp(x,y). Here, the argument u indicates the random nature of

the corresponding quantity, while x and y are used to denote

elements of the indexing set, which in the present context refers

to the spatial extent of the problem. The covariance function

being symmetrical and positive definite, by definition, has all its

eigenfunctions mutually orthogonal, and they form a complete set

spanning the function space to which p(x,t) belongs. It can be

shown that if this deterministic set is used to represent the process

p(x,u), then the random coefficients used in the expansion are

also orthogonal. The expansion then takes the following form

p~x,u !5^p~x!&1(
i51

`

Al ij i~u !f i~x! (3)

where ^•& denotes the operator of mathematical expectation, and

$j i(u)% forms a set of zero-mean orthonormal random variables.
Furthermore, $f i(x)% are the normalized eigenfunctions and $l i%
are the eigenvalues, of the covariance kernel, and can be evalu-

ated as the solution to the following integral equation:

E
D

Rpp~x,y!f i~y!dy5l if i~x! (4)

Fig. 2. Soil-structure interaction substructuring
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where D denotes the spatial domain over which the process

p(x,u) is defined. The most important aspect of this spectral rep-
resentation is that the spatial random fluctuations have been de-

composed into a set of deterministic functions in the spatial vari-

ables multiplying random coefficients that are independent of

these variables. If the random process being expanded, p(x,u), is
Gaussian, then the random variables $j i% form an orthonormal

Gaussian vector. The Karhunen-Loève expansion is mean-square

convergent irrespective of the probabilistic structure of the pro-

cess being expanded, provided it has a finite variance. The mo-

notony of the decay in the magnitude is guaranteed by the sym-

metry of the covariance function, and the rate of the decay is

inversely proportional to the correlation length of the process

being expanded. Thus, the closer a process is to white noise, the

more terms are required in its expansion, while at the other limit,

a random variable can be represented by a single term. In physical

systems, it can be expected that material properties vary smoothly

at the scales of interest to most applications, and therefore only a

few terms in the Karhunen-Loève expansion can capture most of

the uncertainty in the process. It should be emphasized that in

comparison with other mathematical representations, the

Karhunen-Loève expansion requires the minimum number of

terms for a specified accuracy.

Of particular interest in the present analysis is the probabilistic

modeling of positive random fields such as the amplitude of an

input motion as a function of frequency or of soil stiffness and

hysteretic damping profiles as a function of depth, both being

positive quantities. Lognormal random fields, defined as the ex-

ponentials of some appropriate gaussian fields, are used to encap-

sulate the probabilistic variability in these quantities. It can be

shown that the correlation function of a lognormal field l(x,u) is
related to that of its associated gaussian field, g(x,u), through the
relation ~Ghanem 1999a, b!,

^g̃~xi ,u !g̃~xj ,u !&5ln~11@^ l̃ ~xi ,u ! l̃ ~xj ,u !&#/@^l~x,u !&# !
(5)

where a tilde refers to the demeaned process. Thus, given the

statistics of the lognormal field, the statistics of the associated

normal field are first calculated, its Karhunen-Loève expansion is

computed, and realizations of the lognormal random field are ob-

tained by exponentiation according to

l~x,u !5eg~x,u !
5expF ^g~x,u !&1(

i51

`

Al ij i~u !f i~x!G (6)

Expanding each of the random quantities in their respective

Karhunen-Loève expansion, each random process is replaced by a

set of random variables $j i(u)% which is statistically independent
of the random variables for the other processes. This procedure

thus replaces all the random quantities in the problem, be they

random processes or random variables, by a set of uncorrelated

Gaussian random variables, that will be denoted by $j i(u)%.

Stochastic Representation of Dynamic Response

The covariance function of the solution process is not known a

priori, and therefore its Karhunen-Loève expansion cannot be

used to represent it. Since the solution process is a function of the

material properties, the entries of the nodal response vector can be

formally expressed as a nonlinear functional of the set $j~u!% used
to represent the stochasticity. It has been shown ~Wiener 1938;
Cameron and Martin 1947; Kallianpur 1980! that this functional

dependence can be represented in terms of polynomials in gauss-

ian random variables, referred to as polynomial chaos. The ex-

pansion takes on the following form,

u~x,t ,u !5(
j50

p

u j~x,t !C j~u ! (7)

where $C i(u)% denotes the set of multidimensional Hermite poly-
nomials in the set $j i(u)% of basic random variables. These poly-
nomials are orthogonal with respect to the gaussian measure and

have zero mean, except for the zero-order polynomial, which is

defined as, C051. A complete probabilistic characterization of

the solution process u(x,t ,u) is obtained once the deterministic
coefficients u i(x,t) have been calculated. A given truncated series

can be refined along the random dimension either by adding more

random variables to the set $j i(u)% or by increasing the maximum
order of polynomials included in the polynomial chaos expansion.

The first refinement takes into account higher frequency random

fluctuations of the underlying stochastic process, while the second

refinement captures strong nonlinear dependence of the solution

process on this underlying process.

Using the orthogonality property of the polynomial chaos, the

coefficients in the expansion of the solution process can be com-

puted according to the following equation,

uk~x,t !5@^Ck~u !u~x,t ,u !&#/@^Ck
2~u !&# , k51,...,K (8)

Thus, given realizations of the solution process u(x,t ,u), the co-
efficients for a polynomial fit according to Eq. ~7! can be obtained
via statistical averaging as specified by Eq. ~8!. This procedure
will be used in the sequel. Following the polynomial fit to the

solution process, additional realizations of the solution can be

obtained in a very efficient manner.

Convergence Acceleration

One of the key factors for obtaining an efficient numerical imple-

mentation of the stochastic approach based on the polynomial

chaos expansion is related to the computation of the statistical

average in the numerator of Eq. ~8!. Clearly, any multidimen-
sional integration rule can be applied to the evaluation of this

quantity. In the present work, a stratified sampling technique is

used to this end. Both the number of coefficients to be computed

using Eq. ~8! as well as the number of integration points, or
equivalently the number of simulated samples, is directly related

to the amount by which the solution process deviates from a

Gaussian process. Indeed, the polynomial chaos expansion repre-

sents nonGaussian processes as multidimensional Hermite poly-

nomials in Gaussian random variables. Thus the closer the origi-

nal process is to a Gaussian process, the fewer terms are required

in its representation with a preset accuracy. Convergence accel-

eration can thus be achieved by transforming the original process

to a near-Gaussian process, via some judiciously chosen nonlinear

transformation, performing the polynomial chaos decomposition

on the new process, and then transforming the expanded process

back via the inverse nonlinear transformation. It is well known,

for example, that structural response peaks as well as other pro-

cesses associated with extremes of dynamic response, are positive

processes with an extreme value probability density function

~Grigoriu 1995!. It is noted that such an extreme-value distribu-
tion relates to the normal distribution through an exponential

transformation. Therefore, a logarithmic transformation is applied

at the level of the extreme response process before decomposing

it into a polynomial chaos expansion. Then the expansion is per-
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formed in a transformed space for which the corresponding pro-

cess is closer to a normal process. Finally, the non-normal process

is evaluated using an inverse transformation. This transformation

is expressed mathematically by

u5expS (
i51

n

~^ln uC i& !/~^C i
2& !C iD (9)

This significantly speeds up the convergence and improves the

accuracy of the computed series expansion for extreme-value re-

sponses.

Probabilistic Modeling of Dynamic Soil-Structure
Interaction

In this section, it is first demonstrated how the expansions pre-

sented in the previous section are implemented into a weighted

residual scheme to evaluate an expansion for the solution process.

This is followed by a description of the stochastic models used for

the various random fields that enter into the description of the

problem.

Stochastic Finite Elements

The complex stiffness matrix, C(v), depends on the material
properties of the soil, as well as, on the vertical profile of the soil

formation. These quantities are modeled as random processes

each of which is expanded in its own Karhunen-Loève represen-

tation as a linear combination of Gaussian random variables with

deterministic spatial functions. The problem is therefore com-

pletely determined in terms of a denumerable set of basic random

variables. The matrix C(v), being a nonlinear function of these
parameters can thus be expanded in terms of the polynomial

chaos expansion as follows,

C~v !5(
i50

K

C iC
i~v ! (10)

where Ci(v) denotes deterministic matrices that can be evaluated
given the functional dependence of the stiffness matrix C(v) on
the basic random processes such as shear wave velocity and soil

profile. A noted feature of the present expansion is its global

character, whereby the addition of more terms in the expansion

improves not only the behavior near the mean of the probability

distribution, but also the resolution around the tail area. Substitut-

ing the above expansion into the equation of motion, written in

the frequency domain, substituting a polynomial chaos represen-

tation of the solution vector, multiplying through by C l , and then

averaging, results in the equation,

(
k50

p

(
j50

K

~C j ,Ck ,C l!FCssi Csi
j

Cis
j ~Cii

j
2Cf f

j
1xf f

j !
G H uskufkJ

5 H ^C lPs&
^C lPf&

J , l50,...,p (11)

The operation leading up to this last equation can be construed as

forcing the approximation error to be orthogonal to the basis used

in the approximation.

The foregoing analysis involves the solution of a system of

linear equations the size of which is equal to the number of de-

grees of freedom of the system times the number of terms (p

11) used in expanding the solution process with respect to the

polynomial chaos basis. For most practical problems, the size of

this system is too large to handle without customized software. As

the present study aims at utilizing commonly available software

packages for the PRA, a novel implementation of the stochastic

finite element formulation is developed that is theoretically

equivalent to the one described above. Thus, for each realization

of the set $C i% representing the material properties, the matrix
C(v) and the right-hand side vector are assembled. Upon solving
the system, a realization of the solution process is thus obtained.

This solution is multiplied by each of the C i and Eq. ~8! is evalu-
ated, thus leading to an estimate of the coefficients uk in the

expansion of the solution process. The stratified sampling tech-

nique with pairing control is used for efficiently conducting the

simulation procedure ~Iman and Conover 1982!. After the ap-
proximation of the solution in the form given by Eq. ~7! has been
obtained, additional simulations of the solution can be readily

obtained upon simulating the random variables $C i% associated
with material properties and random input motion.

Earthquake Motion

The earthquake ground acceleration is represented by a segment

of a nonstationary random process. Nonstationarity is introduced

by using a deterministic trapezoidal intensity shape function The

frequency content of earthquake motion is described locally, at a

point on the ground surface, usually by either a probabilistic ac-

celeration response spectrum or a power spectral density function.

In the following, a response spectrum specification will be as-

sumed. The three earthquake motion components are assumed to

be statistically independent and the frequency-dependent spatial

correlation structure of the ground motion field is defined by a

coherency spectrum matrix. No attempt is made in the present

work to address the issue of wave propagation in a random me-

dium, or that of randomness in the angle of incidence. It is im-

plicitly assumed that the uncertainties introduced by these factors

can and have been lumped into the uncertainties used to model

the local ground motion.

Local Description of Ground Motion

In engineering practice, probabilistic site-specific ground re-

sponse spectra are typically defined for hazardous facilities New-

mark and Hall 1982; EPRI 1989; Dunbar and Charlwood 1991;

LLNL 1993. These probabilistic ground spectra are usually speci-

fied by three spectral response curves computed at the 16, 50, and

84% nonexceedance probability levels, corresponding to the me-

dian plus or minus one standard deviation from a lognormally

distributed amplification of the ground motion. These amplifica-

tion factors are assumed to be uniform over the whole frequency

range and depend only on the level of damping in the system. The

present analysis allows these spectra to feature frequency-

dependent fluctuations modeled as lognormal stochastic pro-

cesses. The lognormal random field modeling the spectral ampli-

tudes is represented by its transformed Karhunen-Loève

expansion as described earlier. Denoting this process by S(v), it
is therefore represented as

S~v !5expF(
i50

NS

g i~v !j iG (12)

where j i5uncorrelated Gaussian variables g i are as indicated in
Eq. ~6!, and N s is the number of terms retained in the expansion
of the local ground motion. The covariance function used to

model the correlation of this process at different frequencies is

given by

70 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2002



RSS~Dv !5sS
2e2~Dv/bS!

2

(13)

where bS and sS refer to the correlation length and the standard
deviation of the process, respectively. It should be noted that as

used in the present context, a correlation function represents

merely a statistical parametric fit of observed data and does not

have any physical interpretation beyond the statistical one. Once a

parametric model for the correlation function has been chosen,

the parameters of that model can be calibrated to the observed

data. In the present case, the quantities bS and sS are evaluated so
that the bandwidth of the simulated spectra matches that of the

amplification factor of the local soil deposit. Under certain con-

ditions, analytically derived functional forms of the correlation

function may be based on the random vibration theory, therefore

enhancing the value of the analysis ~Der Kiureghian 1981!. Real-
izations of the stochastic process S(v) can thus be obtained from
corresponding realizations of the set of random variables $j i%.
With each of these realizations of S(v), a different ensemble of
ground motion time histories, f (t), can be generated according to

well established procedures ~Levy and Wilkinson 1976!. This
mapping of S(v) into f (t) is assumed to be deterministic. Thus,
to each set of random variables $j i%, is associated one realization
of the process f (t), or equivalently, of its Fourier amplitudes,

F(v). Clearly, processes representing the ground motion and the
local soil properties should be correlated. In the present study,

however, these two quantities are modeled as independent sto-

chastic processes. As additional data is collected and assimilated

into statistical models of ground motion and site conditions, this

restriction can be lifted. The relaxation of the independence con-

dition presents no theoretical difficulties, and can be readily

implemented once a meaningful model has been postulated.

Spatial Variation of Ground Motion

Wave propagation effects and scattering due to site heterogene-

ities induce spatial variations in the ground motion, resulting in a

loss of coherence. For an incoherent wave field, the unlagged

coherence, CohU i ,k(v), for motions at two points i and k, can be

defined as ~Abrahamson 1990!,

CohU i ,k~v !5Cohi ,k~v !A~ iv ,X i2Xk!exp~ iv~X i2Xk!/V i2k!

(14)

where Cohi ,k(v) is the lagged coherence ~also known as the co-
herence!, representing the fraction of the total power of seismic
motion which can be idealized by a single deterministic plane

wave motion referred to as the coherent motion. The coherence

does not account for the wave passage effect. In Eq. ~14!
A(iv ,X i2Xk) is a decaying function of v with unit value at zero
frequency. This function models the distribution over frequency

of the power of the wave field, modeled as a plane wave. The

term exp@iv(Xi2Xk)/Vi2k# represents, in the frequency domain,
the phase angle between the ground motion at the two points due

to the wave passage effect. Moreover, the parameter V i2k is the

apparent seismic wave velocity between the two points. For a

wave field that is perfectly described by a single plane wave, the

function A(iv ,X i2Xk) is identically equal to one. The incoher-
ency effect is significantly larger for higher frequency compo-

nents than for lower frequency components. The effect of inco-

herence is to reduce the translational motion components and

increase the rotational motion components ~Ghiocel et al. 1995;
Ghiocel 1996a; Ghiocel et al. 1996!.
Based on experimental evidence from various records of past

earthquakes, a number of analytical forms for the coherence func-

tion have been considered ~Abrahamson 1990; Zerva and Zhang
1997!. In the following, a simplification ~Luco and Wong 1986!
of a theoretical model based on wave propagation in random

media ~Uscinski 1977! will be used. It is given by the following
equation,

Cohi ,k~v !5Coh~ uX i2Xku,v !5exp~2~gv~ uX i2Xku/Vs!
2!
(15)

in which g is the coherence parameter and V s is the shear wave
velocity in the soil. Experimental evidence suggests values of the

coherence parameter, g, in the range 0.1 to 0.3.
A unit variance stochastic process, c(x ,v) can thus be defined

such that its covariance function is given by the coherence

Cohi ,k(v). This process represents the spatial variability of the
ground motion relative to some reference spatial location. The

ground motion can be obtained from this process upon multiply-

ing by the local ground motion described in the previous subsec-

tion, and accounting for wave passage effects. Moreover, assum-

ing this normalized process to be Gaussian, its Karhunen-Loève

expansion, takes on the following simple form, where j i denote
independent normalized Gaussian variables,

c~x ,v !5(
i50

Nc

j ic i~x ,v ! (16)

Neglecting the wave passage effect, the Fourier amplitude at fre-

quency v and a distance Xk from the control point at which the
local ground Fourier amplitude F(v), is being computed, can
thus be evaluated according to the expression,

Fk~v !5S (
i50

Nc

j ic i~Xk ,v !D F~v ! (17)

Given the Fourier amplitudes at the control point, the amplitudes

at all points on the soil-structure interface can thus be generated.

It should be noted that truncating the summation in Eq. ~17! at the
Nc term results in the variance of the expansion being somewhat

smaller than the variance of the target process which, according to

Eq. ~15!, is equal to 1. This discrepancy, results in the summation
in Eq. ~17! not being equal to one when Xk50. This approxima-
tion error is treated in this paper by renormalizing the expansion

and dividing each term in it by the variance of the approximating

process.

Probabilistic Modeling of Material Properties

Soil Properties

Soil properties are considered to be homogeneous in a horizontal

plane and modeled as one-dimensional random fields with ran-

dom fluctuations in the vertical direction. Specifically, the ran-

domness in the dynamic properties of the soil are introduced

through the variability in its shear modulus and hysteretic damp-

ing. The soil shear modulus at low strains, G0 , is idealized as a

one-dimensional lognormal random field in the vertical direction

having a nonstationary mean and an assumed correlation function.

This idealization is considered to be significantly more realistic

and less conservative than the assumption of perfect correlation

currently applied for parametric deterministic SSI studies. Fig. 7

shows a number of realizations of this process. For soil layering

including different materials, a set of multiple random fields may

be considered. Moreover, the shape of the shear modulus-shear

strain curve, G(g)/G0 vs g, is modeled by a random field along
the shear strain axis with a nonstationary mean. The mean curve
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is assumed to have an arbitrary shape which is either introduced

by the user or by default stored in the program database. The

same modeling assumption used for the shear modulus curve is

also implemented for the hysteretic damping-shear strain curve,

D(g). All of the above random soil properties are decomposed

into their Karhunen-Loève expansion according to

G0~z !5expF(
i50

NG0

j iG0i~z !G (18)

G~g !/G05(
i50

NG

j iG i~g ! (19)

With similar equations for D0(z) and D(g). Realizations of
G(g) can be obtained by simply multiplying realizations of
G(g)/G0 with those of G0 . A correlation function of the follow-
ing form is used for all these processes

RGG~Dg !5sG
2 e2~Dg/bG!

2

(20)

where Dg denotes separation distance along the shear strain di-
mension, sG denotes the standard deviation of the process, and
bG denotes a measure of its correlation length. Given the

physically-motivated requirement of the process G(g) to be
equal, with probability one, to G0 at g51024%, the coefficient

of variation of G(g)/G0 is assumed to have zero variance at this
value of g. Figs. 8 and 9 show realizations of these processes
obtained through a Karhunen-Loève synthesis. Clearly, the larger

the standard deviation of the assumed processes, the larger the

amplitudes of the fluctuation in these processes. Similarly, the

smaller the correlation length, the higher the frequency of the

oscillations in the realizations. In the present study, the correlation

length, bG , is selected large enough so that the shear modulus

and damping are almost always ~with high probability! monotonic
functions of the shear strain. It is instructive to note that experi-

mental investigations suggest the possibility of a nonmonotonic

dependence of dynamic shear and damping moduli on shear strain

~Seed et al. 1985; Sun et al. 1988; Vucetic and Dobry 1991;
Mitchell 1993!. Such behavior can be easily reproduced by the
present stochastic model by using a smaller correlation length in

the corresponding correlation functions.

At this stage of the analysis, NS1NC1NG01ND01NG1ND

random variables characterize the uncertainty of the dynamical

system.

Structural Properties

Structural damping and stiffness parameters are assumed to be

random variables. This assumption is based on the fact that the

Fig. 3. Computed versus design ground response spectra Fig. 4. Probabilistic ground response spectra

Table 1. Parameters for Probabilistic Characterization of Problem

Process Description PDF Number of terms

in KL expansion

Coefficient of

variation

Correlation length

S(v) Ground response spectrum Lognormal 40 0.45 0.85 Hz

G0(z) Low-strain shear modulus Lognormal 10 0.4 7 ft

G/G0 Shear modulus vs. Shear strain Gaussian 3 0–0.4 2.8

D0(z) Low-strain damping modulus Lognormal 10 0.4 7 ft

D/D0 Damping modulus vs. Shear strain Gaussian 3 0–0.4 2.8

c(x ,v) Coherency Gaussian 4 - g50.2 Vs5

1000 ft/s

E Young’s modulus for structure Gaussian 1 0.08 ` ~random

variable!

z Material damping ratio in structure Gaussian 1 0.25 ` ~random

variable!
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Fig. 5. KL-simulated probabilistic ground response spectra

Fig. 6. Shapes of incoherent motion at soil-structure interface at two frequencies

Fig. 7. Statistical estimates and realizations of probabilistic low-strain shear modulus profiles
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random variation of these parameters within the superstructure

are appropriately described by a discrete random field or a set of

independent random variables rather than a continuous random

field expandable in a Karhunen-Loève series. In order to unify the

treatment of random variables and random processes, the former

are viewed as special cases of the latter with a very large corre-

lation length in which case a single term in their Karhunen-Loève

expansion is enough to capture the significant portion of the vari-

ability.

Evaluation of An Actual Design of A Reactor Build-
ing

A typical reactor building ~Lysmer et al. 1988! subjected to earth-
quake motion is investigated using both a probabilistic and a de-

terministic analysis. For the probabilistic analysis the proposed

approach is applied, while for the deterministic analysis the cur-

rent design practice is considered. The finite element model used

for seismic soil-structure interaction analysis is shown in Fig. 1.

This computational model represents a typical breakdown of the

problem for seismic SSI calculations of a typical reactor building

~Popescu 1995!. The superstructure is modeled by beam elements
and the basemat is modeled by solid elements. Rigid links are

introduced to transmit the rocking motion from the superstructure

stick to the basemat. The ACS-SASSI/PC computer code is used

for evaluating the seismic soil-structure interaction for both the

probabilistic and the deterministic analyses.

Table 1 shows the parameters needed for characterizing each

of the random quantities used in this example. The covariance

function of all processes is assumed to be of the form given by

Eq. 13 with the correlation length shown in Table 1 referring to

the parameter bS in that equation. The total number of basic ran-

dom variables used in the probabilistic description of the problem

is thus equal to 72. Assuming the various processes to be inde-

pendent, these random variables are themselves independent, and

for each joint realization thereof, realizations of the corresponding

stochastic processes can be simply computed by synthesizing the

Karhunen-Loève ~or the modified Karhunen-Loève! expansions,
and the corresponding realization of the solution process can be

obtained by solving the associated deterministic problem. Thus, a

number of realizations of the solution can be efficiently synthe-

sized.

The deterministic analysis is performed for a seismic input

defined by the design ground spectrum associated with a 84%

probability of nonexceedance. A design spectrum-compatible ac-

celerogram is generated as input to the site response portion of the

soil-structure interaction analysis. As shown in Fig. 3 the com-

puted response spectra of the generated accelerogram closely en-

velope the target design spectrum. The soil properties used in the

deterministic analysis are estimated from a database of experi-

mental results. In accordance to the current seismic design re-

quirements, two additional extreme bounds, being half and twice

the best-estimate, are also considered. The final results of the

deterministic analysis are obtained by enveloping the results for

the three soil-structure interaction analyses associated with these

three sets of values of soil parameters.

For the probabilistic analysis the earthquake input is defined

by a probabilistic response ground spectrum as shown in Fig. 4.

The four spectral curves correspond to the mean, the median, 16

and 84% nonexceedance probability estimates. A lognormal prob-

Fig. 8. Realizations of shear modulus versus shear strain curve

Fig. 9. Realizations of damping versus shear strain curve

Fig. 10. Coefficient of polynomial chaos expansion of the stochastic

base bending moment solution
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ability density function is assumed in specifying these nonexceed-

ance probabilities. Realizations of this lognormal field are synthe-

sized by relying on the modified Karhunen-Loève expansion

previously described. The correlation length along the frequency

axis is selected depending on the desired bandwidth of simulated

spectra, a function of the damping level. Fig. 5 illustrates the

ensemble statistics ~for nonexceedance probabilities of 16, 50,
84% and mean! obtained from a statistical population of ground
response spectra of size 100, along with a few realizations from

that population.

For the probabilistic SSI analysis the effect of motion incoher-

ency is considered using a Luco-Wong model with a parameter of

0.20. The coherency matrix of the random motion field is decom-

posed using Karhunen-Loève expansion. The amplitude shapes of

the incoherent motion at the soil-basemat interface at 1 and 12 Hz

frequency are shown in Fig. 6. It should be noted from the figure

that, as expected, the incoherency increases significantly with fre-

quency.

Probabilistic soil properties are defined assuming that the low-

strain soil shear modulus and hysteretic damping profiles ~varia-
tion with depth! are lognormal random fields. Fig. 7 shows the

probabilistic shear modulus profile ~statistically estimated profiles
are included!. Plotted curves correspond to mean, median and 16
and 84% nonexceedance probabilities. The transformed space

Karhunen-Loève expansion is used to represent these fields. The

variation of nondimensional shear modulus and hysteretic damp-

ing versus shear strain are modeled as normal random fields. The

Karhunen-Loève expansion is again employed. Realizations of

the shear modulus and damping profiles against shear strain are

plotted in Figs. 8 and 9.

Probabilistic structural properties are described using random

variables. Specifically, the Young’s elastic modulus and the mate-

rial damping ratio are assumed to be independent normal random

variables, each having a coefficient of variation of 0.25.

Fig. 10 shows the coefficients of the transformed polynomial

chaos expansion using 72 basic random variables. Between 1 and

71 are the coefficients of the first-order polynomials, and between

73 and 144 are the coefficients of the second-order polynomials.

The second-order terms featuring coupling between the j i have
been neglected in the present analysis. It is noted that less than

half of the number of basic random variables have significant

contributions. It is very difficult, however, for the complex soil-

structure interaction problem at hand, to identify a priori the most

significant variables. Additional insight along those lines could

greatly enhance the efficiency of the proposed analysis.

Figs. 11 and 12 show a comparison between deterministic and

probabilistic analysis results, both in terms of floor spectra and

structural forces. The probabilistic estimates are obtained from

Fig. 11. Comparison of deterministic and probabilistic bending moment in reactor building structure
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5,000 realizations synthesized from the polynomial chaos expan-

sion of the solution process given by Eq. ~9!. The deterministic
results correspond to a low-strain shear modulus specified by its

nominal value, twice the nominal value, and half that value.

These bounds are associated with a low nonexceedance probabil-

ity levels of 0.001, and are consistent with current design practice.

The stochastic analysis accounts for all the random quantities as

described above. It appears from these results that the current

design practice is overly conservative by not providing for the

variability in parameters other than G0 .

Conclusions

The paper presents a novel stochastic approach for seismic soil-

structure interaction problems. The proposed approach based on

polynomial chaos representation of stochastic solution offers ac-

curacy, efficiency, and significant modeling advantages in com-

parison with the current risk assessment methodologies. The pro-

posed stochastic approach addresses efficiently problems

involving a large number of variables, such is the case with the

dynamic SSI problem, while allowing for the efficient treatment

of random field. These are useful for the idealization of the dy-

namic loading and system parameters. In addition, the novel sto-

chastic approach is capable of handling large variability and

highly nonlinear problems. The proposed approach is currently

being extended for probabilistic modeling of strength capacity of

structural elements, with the final scope of creating an integrated

computational tool for an accurate structural risk assessment of

hazardous facilities including the soil-structure interaction effect.

Acknowledgments

The financial support of the National Science Foundation through

the SBIR and Geomechanics programs under Grant Nos. DMI-

0966321, CMS-9596238, and CMS-9870005 is gratefully ac-

knowledged.

References

Abrahamson, N. A., Schneider, J. F., and Stepp, J. C. ~1990!. ‘‘Spatial
variation of strong ground motion for use in soil-structure interaction

Fig. 12. Comparison of deterministic and probabilistic in-structure spectra in reactor building structure

76 / JOURNAL OF ENGINEERING MECHANICS / JANUARY 2002



analyses.’’ Proc., 4th U.S. National Conf. on Earthquake Engineering,

Palm Springs, Fla., May, Vol. 1, Earthquake Engineering Research

Institute ~EERI!, Oakland, Calif., 317–326.
Cameron, R., and Martin, W. ~1947!. ‘‘The development of nonlinear
functionals in series of Fourier-Hermite functionals.’’ Ann. Math.,

48~2!, 385–392.
Der Kiureghian, A. ~1981!. ‘‘A response spectrum method for random

vibration analysis of MDOF systems.’’ Earthquake Eng. Struct. Dyn.,

9~5!, 419–435.
Dunbar, W. S., and Charlwood, R. G. ~1991!. ‘‘Empirical methods for the
prediction of response spectra.’’ Earthquake Spectra, 7~3!, 333–353.

Energy and Power Research Institute ~EPRI!. ~1989!. ‘‘Probabilistic seis-
mic hazard evaluation at nuclear plant sites in the central and eastern

United States: resolution of charleston issue.’’ Rep. No. NP-6395-D.

Ghanem, R. ~1999a!. ‘‘The nonlinear gaussian spectrum of lognormal

stochastic processes and variables.’’ ASME J. Appl. Mech., 66~4!,
964–973.

Ghanem, R. ~1999b!. ‘‘Stochastic finite elements with multiple random
non-Gaussian properties,’’ J. Eng. Mech., 125~1!, 26–40.

Ghanem, R., and Spanos, P. ~1991!. Stochastic Finite Elements: A Spec-
tral Approach, Springer Verlag, New York.

Ghiocel, D. M. ~1996a!. ‘‘Seismic motion incoherency effects on dy-
namic response.’’ Proc., 7th ASCE EMD/STD Joint Specialty Conf. on

Probabilistic Mechanics and Structural Reliability, Worcester, MA,

August, 1996, D. M. Frangopol and M. D. Grigoriu, eds., ASCE, New

York, 624–627.

Ghiocel, D. M. ~1996b!. ‘‘An advanced computational software system
for analysis of soil soil-structure interaction systems on personal com-

puters.’’ Rep. No. ACS-SASSI/PC, Advanced Computational Software,

Cleveland, Ohio.

Ghiocel, D. M., Wilson, P., and Stevenson, J. D. ~1995!. ‘‘Evaluation of
probabilistic seismic FRS including SSI effects,’’ Proc., 13th SMIRT

Conference, Vol. M, Porto Alegre, North-Holland, Amsterdam, 500–

508.

Ghiocel, D. M., Wilson, P. R., and Thomas, G. G. ~1996!. ‘‘Probabilistic
seismic analysis including soil-structure interaction.’’ Proc., 7th ASCE

MD/STD Joint Specialty Conference on Probabilistic Mechanics and

Structural Reliability, Worcester, MA, August.

Grigoriu, M. ~1995!. Applied Non-Gaussian Processes, Prentice-Hall,
Englewood-Cliffs, N.J.

Idriss, I. M., and Sun, J. ~1991!. ‘‘SHAKE91-A Computer Program for
Earthquake Analysis for Horizontally Layered Sites.’’ Dept. of Geo-

technical Engineering, Univ. of California at Davis, Davis, Calif.

Iman, R. L., and Conover, W. J. ~1982!. ‘‘Distribution free approach to

inducing rank correlation among input variables.’’ J. Commun. Stat.,

11~3!, 311–334.

Kallianpur, G. ~1980!. Stochastic Filtering Theory, Springer-Verlag, New

York.

Levy, S., and Wilkinson, J. P. D. ~1976!. The Component Element Method

in Dynamics, McGraw-Hill, N.Y.

LLNL. ~1993!. ‘‘Eastern US Seismic Hazard Characterization Update.’’

Rep. No. UCRL-ID-115111, Lawrence Livermore National Labora-

tory, Livermore, Calif.

Luco, J., and Wong, H. L. ~1986!. ‘‘Response of a rigid foundation to a

spatially random ground motion.’’ Earthquake Eng. Struct. Dyn.,

14~6!, 891–908.

Lysmer, J., Tabatabaie, R., Tajirian, F., Vahdani, S., and Ostadan, F.

~1988!. ‘‘SASSI—A System for Analysis of Soil—Structure Interac-

tion.’’ Rep. No. UCB 1988, Geotechnical Engineering, Univ. of Cali-

fornia, Berkeley, Calif.

Mitchell, J. K. ~1993!. Fundamentals of Soil Behavior, Wiley, New York.

Newmark, N., and Hall, W. J. ~1982!. Earthquake Spectra and Design,

Earthquake Engineering Research Institute, Berkeley, Calif.

Pires, J., Hwang, H., and Reich, M. ~1985!. ‘‘Reliability Evaluation of

Containments Including Soil-Structure Interaction.’’ USNRC Rep. No.

NUREG/CR-4329, BNL-NUREG-51906.

Popescu, R. ~1995!. ‘‘Stochastic Variability of Soil Properties: Data
Analysis, Digital Simulation and Effects on System Behavior.’’ PhD

Dissertation, Princeton Univ., N.J.

Reed, J., and Kennedy, R. ~1994!. ‘‘Methodology for developing seismic
fragilities.’’ Rep. No. EPRI-RP 2722-23.

Seed, B. H., Wong, R. T., Idriss, I. M., and Tokimatsu, K. ~1985!.

‘‘Moduli and damping factors for dynamic analysis of cohesionless

soils,’’ J. Geotech. Eng., 112~11!, 1016–1032.
Sun, J., Golesorkhi, R., and Seed, B. H. ~1988!. ‘‘Dynamic moduli and

damping ratios for cohesive soils.’’ Earthquake Engineering Research

Center Rep. No. UCB/EERC-88/15, Univ. of California, Berkeley,

Calif.

Uscinski, B. J. ~1977!. The Elements of Wave Propagation in Random
Media, McGraw-Hill, New York.

Vucetic, M., and Dobry, R. ~1991!. ‘‘Effect of soil plasticity on cyclic

response.’’ J. Geotech. Eng., 117~1!, 89–107.
Wiener, N. ~1938!. ‘‘The Homogeneous Chaos.’’ Amer. J. Math., 60~4!,

897–936.

Zerva, A., and Zhang, O. ~1997!. ‘‘Correlation patterns in characteristics
of spatially variable seismic ground motions.’’ Earthquake Eng.

Struct. Dyn., 26~1!, 19–39.

JOURNAL OF ENGINEERING MECHANICS / JANUARY 2002 / 77


